Kategorien
Grundlagen

Was ist Grid Computing?

Die Charakteristiken von Computercluster sind das Bereitstellen von reiner Rechnerleistung in einem lokalen begrenzten Bereich. Die nächste Herausforderung bestand also darin, die Rechenleistung nicht nur lokal, sondern auch global verfügbar zu machen und neben der Rechenleistung z.B. auch Daten und Applikationen bereitzustellen.

Mitte der 1990er wurde der Begriff des Metacomputing als Möglichkeit zur Erweiterung von Paralleler Datenverarbeitung und Custer Computing eingeführt. Die Idee bestand darin, große Computersysteme über WAN-Leitungen (Wide Area Network) miteinander zu verbinden. Im Jahr 1997 wurden erstmals zwei Supercomputer des High Performance Computing Center Stuttgart (HLRS) und des Pittsburgh Supercomputing Centre (PSC) miteinander verbunden. Trotz der Verfügbarkeit von hohen Bandbreiten innerhalb der nationalen und internationalen Forschungsnetzwerke scheiterte das Experiment auf Grund der Latenz.

Das Metacomputing bezieht sich aber lediglich nur auf Computer (Rechenleistung) im Allgemeinen. Ian Foster und Carl Kesselman stellten im Jahre 1999 ein neues erweitertes Konzept mit dem Namen Grid Computing vor, das neben Computer auch andere Arten von (IT-)Ressourcen wie Software, Datenbanken, Rechenleistung, Speicherplatz oder spezielle Hardware beinhalten und miteiander vernetzen kann. Der Begriff des Grid wird abgeleitet aus dem englischen Wort Electrical Power Grid (Deutsch: Stromnetz), dessen Idee darin besteht, die Ressourcen den Benutzern so zur Verfügung zu stellen, als wenn sie den Strom aus der Steckdose bekommen würden. Dabei verfügt das Grid über standardisierte Schnittstellen, über die der Benutzer seine Anfragen übermitteln kann und ihm die Ressourcen dann automatisiert zugeteilt werden. Die Ressourcen sind dabei über das Internet verteilt und können unterschiedlichen ’virtuellen’ Organisationen angehören. Anhand der Schnittstellen kann der Status der Ressourcen abgefragt und diese direkt angesprochen werden. Ein entscheidender Vorteil liegt darin, dass der geographische Ort an dem sich die Ressource befindet nicht mehr von Bedeutung ist – siehe Graphik. Auf Grund des beliebigen und weltweiten Zugriffs auf Ressourcen über das Internet gilt das Grid als Generalisierung des World Wide Web. Davon abgeleitet steht die Technologie des Grid Computing somit als die Basistechnologie für die Koordination und Verarbeitung organisationsübergreifender Geschäftsprozesse und den gemeinschaftlichen Austausch und die Nutzung von Ressourcen.

Das entscheidende Ziel des Grid Computings bestand also darin, Ressourcen gemeinschaftlich global zu nutzen sowie diese zu koordinieren und darüber hinaus gemeinsam Probleme institutionsübergreifend in dynamischen virtuellen Organisationen zu lösen. Genauer bedeutet dies, dass zu Beginn Formalitäten wie das Abrechnungsschema und die Zugangsrechte geklärt werden und anschließend der Zugriff auf die Ressourcen wie z.B. Rechnerleistung oder Anwendungen für die gemeinschaftliche Nutzung bereitgestellt werden. Der Begriff der virtuellen Organisation beschreibt in diesem Fall eine dynamische Allianz von Organisationen, die ein gemeinsames Interesse während der Nutzung des Grids vertreten.

Arten von Grid Computing

Je nachdem wie die Ressourcen miteinander vernetzt sind und um was für ein Anwendungsszenario es sich handelt, können Grids in unterschiedliche Arten unterteilt werden. Nachfolgend werden fünf unterschiedliche Arten betrachtet.

  • Compute Grids
    Compute Grids werden verwendet um einem Benutzer Rechnerleistung bzw. Rechnerkapazität, die ihm in seiner eigenen Umgebung nicht zur Verfügung stehen, verteilt bereitzustellen. Das Bereitstellen kann hierbei eine derzeit nicht verwendete Ressource – z.B. eine Workstation außerhalb der Geschäftszeiten sein, oder aber auch ein Hochleistungclustersystem.
  • Data Grids
    Data Grids werden eingesetzt um große verteilte Datenmengen gemeinsam zu Nutzen und diese zu verarbeiten. Dabei wird eine sogenannte Data-Federation, eine organisationübergreifende Sicht auf alle Daten, die beispielsweise einem Projekt zugewiesen sind, definiert. Bei so einer Data-Federation handelt es sich um ein dezentral verwaltetes System, bei dem derjenige, der die Daten in dieser Umgebung zur Verfügung stellt auch die uneingeschränkte Kontrolle über diese Daten behält.
  • Application Grids
    Application Grids waren der erste Ansatz um virtuelle Organisationen zu etablieren und damit die organisationsübergreifende gemeinsame Nutzung von Ressourcen voranzutreiben. Die Betreiber der Grids sollten dadurch eine höhere Auslastung und die Benutzer ein besseres Angebot erfahren. Themen, die innerhalb dieses Grids auftreten, sind sichere und schnelle Datenverbindungen, Authentifikationen, Authorisierungen und Single-Sign-On sowie Accounting und Abbrechnungsmöglichkeiten.
  • Resource Grids
    Resource Grids sind die Erweiterung der Application Grids. Diese definieren ein Rollenmodell, in dem eindeutig zwischen einem Grid Benutzer, einem Grid Provider und einem Resource Provider unterschieden wird. Die Hierarchie ist logisch geordnert. Ein Grid Benutzer verwendet die Grid Infrastruktur des Grid Provider um die dort vorhandenen Ressourcen des Resource Providers zu nutzen. Für den Grid Benutzer unterscheidet sich die Funktionalität des Application- und des Resource Grids nicht. Das Konzept der beiden hat aber einen gravierenden Unterschied. Application Grids werden vertikal integriert, was bedeutet dass der Bedarf an Fremdleistungen sehr gering gehalten wird und die Komponenten individuell hinzugefügt werden. Dagegen müssen bei einem Resource Grid alle Schnittstellen definiert und offen gelegt werden, da jeder Ressource Provider über die Spezifikation der Grid Infrastruktur des Grid Providers informiert sein muss um dort ggf. seine Ressourcen anbieten zu können.
  • Service Grids
    Ein Service Grid verbindet das Konzept der Serviceorientierung mit der Technik der Resource Grids. Ein Service wird in diesem Zusammenhang als ein Bündel von mehreren Komponenten betrachtet, von dem jede einzelne Komponente wiederum als Utility von einem anderen Resource Provider zur Verfügung gestellt wird. In dieser Form des Grids existiert eine übergeordnete Form des Grid Providers, der so genannte Grid Service Provider, der im direkten Kontakt mit den Grid Benutzern steht und ihnen einen Komplettservice anbietet. Das bedeutet, dass der Grid Benutzer nicht darüber informiert ist, welcher Resource Provider ihm welche Ressource bereitstellt.
Kategorien
Services

Enomalys – ECP Cloud Service Provider Edition

Mit der Enomaly Service Provider Edition steht eine von Enomaly auch „cloud in a box“ genannte Plattform zur Verfügung, mit der Internetcarrier und Hosting Anbieter ihren Kunden Infrastructure as a Service Lösungen anbieten können.

Die Platform verfügt über eine Benutzerschnittstelle sowie eine REST API, mit der die Kunden die Verwaltung ihrer Cloud eigens vornehmen können. Ein weiteres Feature ist die „Theme Engine“ mir der das Branding vom Internetcarrier oder Hosting Anbieter auf die jeweiligen Bedürfnisse angepasst werden kann. Weiterhin können mehrere Kunden eines Anbieters parallel auf einer einzigen Plattform verwaltet werden und ein Quota System sorgt für die gerechte Verteilung der Ressourcen. Die Plattform kann darüber hinaus in bereits bestehende Systeme für die Abbrechnung, Ressourcenversorgung und das Monitoring integriert werden.

Nach Angaben von Enomaly wird die Plattform derzeit von 15.000 Unternehmen weltweit eingesetzt.

Funktionen & Umgebung

Die Plattform verfügt u.a. über folgende Funktionen, die im weiteren Verlauf dieses Artikels jeweils kurz vorgestellt werden.

  • Managementkonsole für die Endkunden
  • Fernverwaltung
  • Flexible Hardware-Profile
  • Management für virtuelle Maschinen
  • Nutzungsabbrechnung
  • App Center
  • Virtual Private Cloud (Vlan)
  • Theme Engine
  • Gruppierung von virtuellen Maschinen

Managementkonsole für die Endkunden

Mit der Managementkonsole können Endkunden auf ihre virtuellen Maschinen zugreifen, diese verwalten und bekommen darüber die Fehlermeldungen des Systems angezeigt. Die Anbieter können mittels RSS Feeds die Inhalte entsprechend anpassen und darüber ihre eigenen Inhalte anzeigen.

Fernverwaltung

Mittels einer Remote Desktop Verbindung oder der Kommandozeile kann auf die virtuellen Maschinen zugegriffen werden, auch dann wenn keine Netzwerkverbindung nach Aussen hin besteht.

Flexible Hardware-Profile

Auf Basis von flexiblen Hardware Profilen können virtuelle Maschinen nach ihrer Bereitstellung durch den Endkunden angepasst und skaliert werden. Die Hochverfügbarkeit einer virtuellen Maschine wird dadurch garantiert, indem im Falle eines physikalischen Fehlers die virtuelle Maschine automatisch auf eine andere funktionsfähige Hardware übertragen wird.

Management für virtuelle Maschinen

Endkunden können entweder einzelne virtuelle Maschinen oder ganze Gruppen von virtuellen Maschinen weltweit und von jedem Rechner aus starten, stoppen und neu starten.

Nutzungsabbrechnung

Über die Nutzungsabbrechnung haben Endkunden einen Echtzeit-Überblick über die aktuell genutzen Ressourcen (virtuelle Maschinen, Arbeitsspeicher, CPUs und Speicherplatz) im Verhältnis zu den noch verfügbaren Ressourcen.

App Center

Mit dem App Center können Anbieter ihren Kunden bereits vor-konfigurierte Cloud Anwendungen, wie z.B. Betriebssysteme zur Verfügung stellen. Endkunden können aus den virtuellen Maschinen Images eines Anbieters virtuelle Maschinen erstellen und diese direkt ihrer Cloud hinzufügen, oder eigene virtuelle Maschinen verwenden.

Virtual Private Cloud (Vlan)

Für jeden Endkunden und dessen virtuellen Maschinen steht ein oder mehrere private VLANs zur Verfügung, die durch den Endkunden selber verwaltet werden können.

Theme Engine

Mit der Theme Engine kann jeder Anbieter das Branding, sowie das look & feel enstprechend seiner Bedürfnisse anapssen.

Gruppierung von virtuellen Maschinen

Mittels eines Tagging Systems (tags) können mehrere einzelne virtuelle Maschinen zu einer Gruppe von virtuellen Maschinen organisiert werden.

Quelle

Kategorien
Management

Thin Clients

IT-Abteilungen leben neben einem erhöhten Kostendruck zusätzlich mit den Problemen der Sicherheit und der Aufrechterhaltung des IT-Betriebs.

Der in den letzten Jahren immer mal wieder aktuell gewordene und dann wieder verblasste Ansatz der Thin Client Nutzung kann der IT helfen diese Probleme zu bewältigen, verfügen Thin Clients doch gegenüber den klassischen Desktop PCs über einige Vorteile.

Zunächst sind Thin Clients – wie der Name schon andeutet – sehr einfach und weniger komplex als Desktop PCs. Das liegt zum einen an den geringeren und funktional beschränkten Hardwareressourcen, zum anderen an der eingesetzten Software. Die benötigte Software wird serverseitig betrieben, wodurch ein lokales „vollwertiges“ Betriebssystem nicht benötigt wird. Diese beiden Kernpunkte sorgen dafür, das Thin Clients weniger sensibel bzgl. Fehler und Angriffe sind.

Von Desktop PCs wird heutzutage erwartet, dass sie 24/7 funktionsfähig sind. Dabei wird jedoch nicht bedacht, das nicht vorhersehbare Situationen, wie Hackerangriffe, der Ausfall der Hardware oder ganz einfach Benutzer dafür verantwortlich sind, das dem nicht so ist und niemand diese Erwartungen gewährleisten kann.

Speziell die Einflussnahme der Benutzer auf die Systemkonfiguration erhöht auf Thin Clients, durch das Beschränken oder vollständige entziehen der Rechte, die Systemstabilität und schützt den Benutzer und das gesamte Unternehmensnetzwerk vor Angriffen durch Viren, Würmer und jeglicher Form von Malware. Weiterhin wird die Stabilität und der Schutz erhöht, da Thin Clients ihre Anwendungen von einem oder mehreren zentralen Servern beziehen und nicht mehr – wie Desktop PCs – auf lokale Anwendungen und ein vollwertiges lokales Betriebssystem angewiesen sind.

Trotz hinreichender Anordnung speichern Benutzer ihre Daten generell auf der lokalen Festplatte und nicht wie gefordert auf die dafür vorgesehenen Netzlaufwerke, also auf den zentralen Servern. Nicht selten hört man von Fehlern der Festplatte die dazu führen, dass die Arbeit eines Tages in kurzer Zeit hinfällig war und erneut erledigt werden muss. Der Diebstahl der Daten sollte auch hier nicht außer acht gelassen werden. Auf der anderen Seite sind Benutzer in diesem Fall für Backups selber zuständig, was verständlicherweise gerne mal vergessen wird. Da Thin Clients über keine lokalen Daten verfügen, sind damit alle oben genannten Probleme hinfällig. Das Speichern der Daten erfolgt auf zentralen Servern, wo von ihnen jeden Tag automatisiert ein Backup vorgenommen wird. Dazu kommt, dass wenn keine lokalen Daten vorhanden sind, diese auch nicht gestohlen werden können. Zudem reicht es aus, Desktop-Firewall Konzepte serverseitig einzurichten, wodurch der Administrationsaufwand verringert wird.

Der letzte Themenbereiche behandelt die physikalische Sicherheit der Systeme. Werden Desktop PCs gestohlen, ist der Angreifer im schlimmsten Fall im Besitz unternehmenskritischer Daten (Festplattenverschlüsselung hin oder her). Thin Clients hingegen werden erst dann sinnvoll, wenn sie mit einem Server des Unternehmensnetzwerks verbunden sind und haben außerhalb des Unternehmens für den Angreifer keinen Nutzen. Auch der Diebstahl der Daten durch den Anschluss externer Geräte wie USB-Sticks oder USB-Festplatten oder das Übertragen von Viren etc. durch CDs stellt ein nicht zu verkennendes Problem dar. Der Zugriff kann bei Desktop PCs natürlich unterbunden werden. Das physikalische entfernen stellt sich jedoch als ziemlich schwierig und aufwendig dar. Fällt die Entscheidung daher auf Thin Clients, sollte mit den Gedanken gespielt werden sich gegen physikalische vorhandene USB-Ports und CD/DVD Laufwerke zu entscheiden.

All die oben beschriebenen Probleme der Desktop PCs können natürlich durch diverse Softwareangebote behoben werden. Jedoch verursachen diese wiederum Anschaffungs-, Installations- und Wartungskosten. Zudem ist die Verträglichkeit mit vorhandener (spezial)-Software nicht garantiert.

Erweitern wir den Thin Client Gedanken nun um das Thema Cloud Computing ist es durchaus vorstellbar, dass die Infrastruktur für die Terminalserver nun nicht mehr im eigenen Rechenzentrum steht, sondern als Appliance/Image oder einem Terminalserver in einer Cloud z.B. von Amazon, GoGrid oder einem anderen Anbieter gehostet wird. Ein Unternehmen müsste dann lediglich über die Hardwareressourcen (Thin Clients) und eine schnelle Internetverbindung verfügen. Das ist wohlgemerkt natürlich eine sehr abstrakte und ideale Sicht auf das Thema, die noch tiefer durchdrungen werden muss.

Quelle der Graphik

  • NetPoint
Kategorien
Services

Glide OS

Mit eyeOS habe ich vor kurzem bereits einen Cloud Desktop vorgestellt. Heute folgt mit Glide OS nun der Zweite.

Wie bei eyeOS handelt es sich bei Glide OS in der aktuellen Version 4.0 um ein webbasiertes Betriebssystem, dass unabhängig von der Hardware und dem darauf ausgeführten „klassischen“ Betriebssystem ausgeführt werden kann und auf das mit einem Standard Webbrowser zugegriffen wird. Der Zugriff kann dabei von einem gewöhnlichen PC (http://desktop.glidesociety.com/default.aspx) oder einem Smartphone (http://www.glidemobile.com/browser_index.aspx) stattfinden.

Zu folgenden Systemen ist Glide OS derzeit kompatibel:

  • Windows
  • Mac OS X
  • Linux
  • Solaris
  • Android
  • BlackBerry
  • iPhone
  • Palm Pre
  • Symbian
  • Windows Mobile

Für Android und Blackberry stehen zusätzlich proprietäre Anwendungen bereit, für iPhone/iPod Touch, sowie Palm und Symbian sollen welche folgen.

Für die Webbrowser Firefox, Internet Explorer und Chrome stehen darüber hinaus spezielle Plugins zur Verfügung.

Die Architektur von Glide OS basiert auf einem Mix aus C++, HTML, JavaScript (AJAX) und Flash Applikationen. Mit dem Glide Sync App können Daten zwischen dem Glide OS Desktop und dem lokalen PC ausgetauscht werden. Dabei werden die Daten zentral auf einem Glide OS Server gespeichert. Neben einem Programm zur Bildbearbeitung sind weitere Apps wie z.B. eine Office Suite (wobei ich eine Textverarbeitung nicht gefunden habe), ein E-Mail Client oder ein Kalender vorhanden. weitere Anwendungen inkl. Screenshots sind weiter unten zu sehen.

Glide OS ist ein zwei Versionen verfügbar. Die kostenlose bietet 30 GB Speicherplatz und kann von bis zu 6 unterschiedlichen Benutzern verwendet werden. Die Premium Variante kostet entweder $4.95 monatlich oder $49.95 pro Jahr. Das beinhaltet dann 250 GB Speicherplatz und 25 unterschiedliche Benutzer.

Screenshots & Anwendungen

Der Anmeldedialog

Der Startbildschirm nach der Anmeldung

Unter „Settings“ können benutzerspezifische Einstellungen vorgenommen werden.

Mit „Draw“ steht ein rudimentäres Malprogramm ähnlich Microsoft Paint zur Verfügung.

Mit dem „Address Book“ können die Kontakte verwaltet werden.

Hinter „Stickies“ verbergen sich Notizzettel für den Desktop.

Für die Synchronisation mit dem lokalen PC wird für jedes Betriebssystem eine spezielle Anwendung benötigt.

Mit dem „Calculator“ steht auch ein wissenschaftlicher Taschenrechner bereit.

Beim Versuch den Text in der Textverarbeitung „Write“ zu vergrößern, wurde meine Eingabe immer wieder gelöscht, daher nur fett!

Ein Blick auf den „Calender“.

Die Präsentationsanwendung „Present“.

Das Bildbearbeitungsprogramm „Photo Edit“.

Mittels „Customize“ kann das Aussehen des Desktops angepasst werden.

Quelle

Kategorien
Grundlagen

Was ist Cluster Computing?

Handelte es sich bei Supercomputern zu Beginn noch um Systeme mit spezieller Technologie, werden heute in der Regel gängige Servertechnologien eingesetzt. Dabei werden viele einzelne, in der Regel kostengünstige Server zu einem so genannten Servercluster vernetzt, um über die Rechenleistung eines Supercomputers zu verfügen.

Die Grundlagen des Cluster Computing legte Gene Amdahl als Computerarchitekt bei IBM. In seinem 1967 veröffentlichten Paper zum Thema ’Parallel Processing’ stellte er folgende These auf, die auch als Amdahl’s Law bezeichnet wird und als Basis für Multiprozessor sowie Clustercomputer gilt.

Das Gesetz besagt, ’… wie sich der nicht parallelisierbare Anteil eines Programms auf die Gesamtrechenzeit auswirkt …’. Genauer bedeutet dies, dass die Geschwindigkeitszunahme in erster Linie durch den sequentiellen Anteil des Algorithmus beschränkt wird. Das ist darauf zurückzuführen, dass sich die Ausführungszeit nicht durch Parallelisierung verkleinern lässt.

Die ersten Ideen einen Computercluster aufzubauen stammen aus den Zeiten, in denen auch die ersten Computernetzwerke aufgebaut wurden. Der Grundgedanke zum Aufbau solcher Netzwerke bestand darin, Ressourcen in Form von Computersystemen untereinander zu verbinden und damit einen quasi Computercluster aufzubauen. Durch die Einführung der Paket vermittelnden Netzwerke im Jahre 1962 durch die Firma RAND, wurde auf dieser Grundlage 1969 das ARPANET Projekt gegründet. Dieses gilt als das erste Commodity-Netzwerk auf Basis eines Computercluster, in dem vier unterschiedliche Computercenter miteinander verbunden wurden. Jedes dieser vier Computercenter war für sich selbst wieder ein Computercluster, die aber nur autonom arbeiteten. Aus dem ARPANET wurde später das Internet, weshalb das Internet auch als die ’Mutter’ aller Computercluster gilt, aus dem Grund, das quasi alle Computerressourcen inkl. aller bereits bestehenden Cluster zusammengeschlossen werden können.

Ein Computercluster beschreibt also eine meist große Anzahl von einzelnen miteinander vernetzten Computern, die dazu verwendet werden einzelne Teilaufgaben, die zu einer Gesamtaufgabe gehören, parallel zu verarbeiten. Von außen betrachtet wirkt ein Computercluster wie ein einzelnes System. Die jeweiligen Knoten sind dabei untereinander über ein schnelles Netzwerk verbunden. Durch den Aufbau solcher Serverfarmen wird die Rechenkapazität und Verfügbarkeit deutlich gegenüber eines einzigen Computers erhöht. Vor allem die Ausfallsicherheit eines solchen Computercluster ist ein entscheidender Vorteil gegenüber einem einzelnen Computersystem. Fällt innerhalb eines Clusterverbunds ein einzelnes System aus, hat das keinen direkten Einfluss auf alle anderen beteiligten Systeme innerhalb des Clusters. Es wird damit also eine Redundanz erzielt. Computercluster können am besten für die Verarbeitung von Batch-Jobs eingesetzt werden, bei denen viele parallele Teilberechnungen durchgeführt werden. Handelt es sich bei der Verarbeitung jedoch um Teilaufgaben, die im hohen Maße synchronisiert werden müssen, sind Computercluster dafür nicht geeignet, da der Kommunikationsoverhead zwischen den einzelnen Systemen den Performancegewinn, der durch die parallele Verarbeitung entsteht, wieder relativiert.

Der erste kommerziell zu erwerbende Computercluster (ARCnet) wurde im Jahr 1977 von der Firma Datapoint vorgestellt. Mit dem so genannten VAXCluster für ihr
VAX-System hatte die Firma DEC im Jahr 1983 den ersten richtigen Erfolg im Bereich des kommerziellen Clustercomputing.

Arten von Computer Cluster

Das Ziel des Cluster Computing ist die Bereitstellung einer sehr hohen Rechenleistung bzw. einer besonders ausfallsicheren Rechnerumgebung. Von diesen Zielen ausgehend werden verschiedene Arten von Computercluster und dadurch auch deren Einsatzfeld definiert.

Bei Clustersystemen wird grundsätzlich zwischen homogenen und heterogenen Clustern unterschieden. Homogene Cluster zeichnen sich dadurch aus, dass die jeweiligen Computer, die dem Cluster angehören, alle das gleiche Betriebssystem und die gleiche Hardware einsetzen. Computer, die zu einem heterogenen Cluster gehören, dürfen über unterschiedliche Betriebssysteme und Hardware verfügen.

Heutzutage werden drei Arten von Computercluster unterschieden und eingesetzt:

  • Hochverfügbarkeit Cluster
    Hochverfügbarkeit Cluster werden verwendet die Verfügbarkeit zu steigern und für eine bessere Ausfallsicherheit zu sorgen. Aus diesem Grund darf die gesamte Hardware als auch die Software eines solchen Cluster in keinerWeise über einen Single-Point-of-Failure verfügen, da die Definition und der Zweck diesem widersprechen würde. Im Fehlerfall werden die Dienste von dem defekten Host des Cluster auf einen anderen Host automatisch übertragen. Einsatzgebiete solcher Clustersysteme sind Bereiche, in denen eine Ausfallzeit maximal einige Minuten pro Jahr erlaubt. Eine besondere Art von Hochverfügbarkeit Cluster sind die so genannten ’stretched Cluster’. In diesem Fall werden einzelne Hosts eines Cluster räumlich getrennt in verschiedene weit voneinander entfernte Rechenzentren untergebracht. Kommt es in einem der Rechenzentren zu einem nicht vorhersagbaren Problem, können die Hosts des anderen Rechenzentrums vollständig die Aufgaben übernehmen.
  • Load-Balancing Cluster
    Load-Balancing Cluster werden dazu verwendet eine Lastverteilung auf mehrere Computer zu ermöglichen. Aus der Benutzersicht steht ihm nur eine zentrale Einheit gegenüber, die aber logisch gesehen aus mehreren vernetzten Systeme besteht. Um die Leistung des gesamten Cluster zu erhöhen, werden nicht die einzelnen Hosts für sich aufgerüstet, sondern ein zusätzlicher Host dem Cluster hinzugefügt. Einsatzbereiche sind Umgebungen, in denen die Anforderungen an die Rechenleistung extrem hoch sind.
  • High Performance Computing Cluster
    High Performance Computing Cluster werden überwiegend dazu verwendet Berechnungsverfahren durchzuführen, wobei die Berechnungen auf mehrere Hosts verteilt werden. Hierbei werden zwei unterschiedliche Arten der Aufgabenverteilung unterschieden. Eine Möglichkeit besteht darin, die Aufgaben in unterschiedliche Pakete zu verteilen, die dann parallel auf mehreren Hosts ausgeführt werden. Die andere Variante wäre, die Aufgaben auf die einzelnen Hosts direkt zu verteilen. Einsatzgebiete der High Performance Computing Cluster liegen überwiegend in den wissenschaftlichen Bereichen, aber auch die Serverfarmen für das Rendern von 3D-Computergrafiken und Computeranimationen gehören zu dieser Art von Cluster.
Kategorien
News

Blitznews: Cloud Service Ghost stellt Dienst ein

Der Cloud Computing Anbieter Ghost wird am 15. März 2010 seinen Dienst einstellen. Gründe dafür sind der nicht mehr wirtschaftliche Nutzen des Angebots für das Unternehmen. Ghost wird sich nun darauf konzentrieren seine Technologien an größere Unternehmen zu lizenzieren bzw. zu verkaufen.

Ghost fordert seine Benutzer daher seit dem heutigen Tage dazu auf alle wichtigen Daten zu anderen Anbietern wie z.B. Google Docs, Microsoft SkyDrive, Gmail oder Yahoo zu migrieren.

Für den Datenexport stellt Ghost diverse Anleitungen zur Verfügung, die unter den folgenden Links gefunden werden können.

  • Herunterladen einer einzelnen Datei
  • Herunterladen von kompletten Ordnern
  • Migration des Ghost E-Mail Postfach

Quelle

  • Ghost
Kategorien
Analysen Services

Cloud Computing Technologien im Vergleich

Auf den Devopsdays 09 fand ein Vergleich aktueller Cloud Computing Technologien auf Basis einer Matrix statt. Dabei wurden die Funktionen und Services diverser führender Anbieter/ Technologien einander gegenübergestellt.

Kategorien
Events

CloudLab '10

Vom 19.04.2010 bis 23.04.2010 findet das CloudLab ’10, eine virtuelle Cloud Computing Konferenz, statt. Die Organisation wird von Experten und Behörden aus dem Bereich des Cloud Computing übernommen und stellt die aktuellen Forschungen, Entwicklungen und Leistungen der führenden Anbieter aus diesem Bereich vor, um die Akzeptanz von Cloud Computing weiter zu erhöhen und eine gewisse Form zu geben.

Das gesamte Team erhofft sich mit den angekündigten Sprechern alle Aspekte des Cloud Computing anbieten zu können und erwartet rege Diskussionen, egal ob es sich um Themen wie Private Clouds, Public Clouds, Sicherheit oder rechtliche Fragen handelt. Ziel soll es sein, den Visionären in diesen Bereich gezielte Fragen zu stellen, um sie damit nachdenklich zu stimmen und hiermit gewissermaßen Einfluss auf die Entwicklung zu nehmen.

Weiterhin sollen sich führende Anbieter und Fachleute über veröffentlichte Forschungsergebnisse austauschen, über Best Practise Ansätze diskutieren und sich miteinander vernetzen.

CEOs und CIOs sollen sich einen Überblick über die neuesten Innovationen im Bereich des Cloud Computing verschaffen und Ideen erhalten, wie sie ihre Chancen nutzen und Profit aus dem Cloud Computing Markt erzielen können.

Early Birds erhalten ein Ticket zum Preis von 55 USD plus einer zusätzlichen Buchungsgebühr von 1 USD. Darin enthalten sind alle Vorträge und deren späterer Download.

Keynotes

  • Matt Bross, Global CTO, Huawei Technologies, Ltd.
  • Mark De Simone, Chief Business Development Officer, Cordys.
  • Tom Lounibos, CEO, SOASTA.
  • Chris Kemp, CIO, NASA Ames.
  • Andy Brown, Managing Director, Global Technology Strategy, Architecture and Optimization, Bank Of America, Inc.
  • Parker Harris, Executive Vice President, Technology, salesforce.com, Inc.
  • Simon Crosby, CTO, Virtualization and Management, Citrix Systems, Inc.
  • Hal Stern, SVP Global Systems Engineering, Sun.

Preise

  • Teilnahmegebühr: 55 USD
  • Zusatzgebühr: 1 USD

Weitere Informationen

  • CloudLab ’10
  • Registrierung
  • Twitter

Quelle

  • Cloud Slam Event

Kategorien
Services

CloudLinux

Mit CloudLinux hat der gleichnamige Hersteller eine Linux-Distribution vorgestellt, die speziell für Webhosting Anbieter und Rechenzentren gedacht ist. Das Betriebssystem basiert auf der proprietären Lightweight Virtual Environments (LVE) Technologie, und beinhaltet eine Apache LVE-Version. Mit dieser Technologie werden die Hardware Ressourcen des gesamten Systems so aufgeteilt, dass sie speziell zu einzelnen gehosteten Webseiten zugewiesen werden können. Damit soll verhindert werden, dass eine einzelne Webseite den kompletten Server beeinträchtigen kann.

In diesem Artikel werden die Hintergründe und Funktionen von CloudLinux beschrieben.

Hintergrund

CloudLinux ist ein auf Linux basierendes Betriebssystem, welches kommerziell unterstützt wird und mit den bekanntesten RPM basierten Linux Distributionen kompatibel ist. Es richtig sich an Shared Hosting Anbieter und Rechenzentren und soll durch eine höhere Effizienz und Stabilität eine rentableren Betrieb bieten.

Vorteile für Shared Hosting Anbieter

  • Erhöhen der Anzahl der Konten pro Server.
  • Reduzierung der Hardware-, Strom-, Raum-und Verwaltungskosten.
  • Schutz des gesamten Server vor der Überlast durch eine einzelne Webseite.
  • Durch eine höhere Sicherheit werden die Ausfallzeiten minimiert und wodurch weniger Verwaltungs- und Supportzeiten benötigt werden.
  • 24/7 Unterstützung

Vorteile für Rechenzentren

  • Kommerzieller Support und ein gewartetes Betriebssystem
  • Spezielle für das Web optimierte Distribution
  • Vollständige Unterstützung mittels Ticketing System
  • Integration in bestehende Monitoringsysteme

Lightweight Virtual Environments (LVE)

Mit der Lightweight Virtual Environments (LVE) Isolationstechnologie erhöht CloudLinux die Server-Dichte und verbessert die Stabilität und Zuverlässigkeit. LVE verspricht ein verbessertes Ressourcenmanagement, indem die Ressourcen die einer Webseite zur Verfügung stehen limitiert werden. Damit kann eine einzelne Webseite nicht den gesamten Server ausbremsen. Weiterhin stehen Methoden zur Verfügung, mit denen die Benutzer identifiziert werden könne, die aktuell die meisten Server Ressourcen nutzen. Die einzelnen Webseiten sind voneinander isoliert, wodurch z.B. ein Hackerangriff die anderen auf dem Server gehosteten Webseiten nicht beeinträchtigt.

Vergleich: Standard OS vs. CloudLinux

Standard OS

  • Mehrere Webseiten pro Server.
  • Jede Webseite benötigt Ressourcen.
  • Eine einzelne Webseite kann den gesamten Server überlasten.
  • Hacker kann durch den Angriff einer Webseite alle auf dem Server vorhandenen Webseiten attackieren bzw. lahmlegen.

CloudLinux

  • Isolation der Ressourcen mittels der LVE Technologie.
  • LVE limitiert den Ressourcenzugriff einer einzelnen Webseite, dadurch werden die anderen Webseiten vor Ressourcenengpässen geschützt.
  • Eine einzelne Webseite kann den Server nicht überlasten.
  • Ein Server kann mehr Webseiten beherbergen.
  • Verbesserung der Server Performance.

Vergleich: Open Source Anbieter vs. CloudLinux

Quelle

Kategorien
Tutorials

Installation einer Private Cloud mit OpenNebula

Dieser Artikel beschreibt das Einrichten einer Private Cloud mit OpenNebula auf Ubuntu. Die Infrastruktur besteht dabei aus drei physikalischen Maschinen. Einem Front-End und zwei Nodes, auf denen die virtuellen Maschinen ausgeführt werden. Auf den Nodes muss zusätzlich eine Bridge konfiguriert werden, damit die virtuellen Maschinen das lokale Netzwerk erreichen können. Für das Einrichten der Brigde siehe den Bereich Bridging.

Installation

Auf dem System für das Front-End installieren wir OpenNebula mit folgendem Befehl:

sudo apt-get install opennebula

Für jeden Node installieren wir den OpenNebula-Node:

sudo apt-get install opennebula-node

Um später die SSH Schlüssel zu kopieren, benötigt der oneadmin (wird von OpenNebula erstellt) ein Passwort. Dazu führen wir auf jeder Maschine folgenden Befehl aus:

sudo passwd oneadmin

Nachfolgend müssen die Namen für node01 und node02 entsprechend der eigenen Installation angepasst werden.

Nun kopieren wir den SSH Schlüssel des oneadmin auf jeden Node und in die Datei authorized_keys des Front-Ends.

sudo scp /var/lib/one/.ssh/id_rsa.pub oneadmin@node01:/var/lib/one/.ssh/authorized_keys
sudo scp /var/lib/one/.ssh/id_rsa.pub oneadmin@node02:/var/lib/one/.ssh/authorized_keys
sudo sh -c "cat /var/lib/one/.ssh/id_rsa.pub >> /var/lib/one/.ssh/authorized_keys"

Der SSH Schlüssel jedes Nodes muss in die Liste der bekannten Hosts unter /etc/ssh/ssh_known_hosts auf dem Front-End hinzugefügt werden. Nun muss die SSH Session beendet werden und der SSH Schlüssel von ~/.ssh/known_hosts nach /etc/ssh/ssh_known_hosts kopiert werden.

sudo sh -c "ssh-keygen -f .ssh/known_hosts -F node01 1>> /etc/ssh/ssh_known_hosts"
sudo sh -c "ssh-keygen -f .ssh/known_hosts -F node02 1>> /etc/ssh/ssh_known_hosts"

Diese Schritte erlauben dem oneadmin SCP ohne ein Passwort oder manuellen Eingriff zu nutzen, um eine Image auf den Nodes bereitzustellen.

Auf dem Front-End muss ein Verzeichnis zum Speichern der Images für die virtuellen Maschinen erstellt und dem oneadmin Zugriff auf das Verzeichnis gegeben werden.

sudo mkdir /var/lib/one/images
sudo chown oneadmin /var/lib/one/images/

Nun kann eine virtuelle Maschine in das Verzeichnis /var/lib/one/images kopiert werden.

Eine virtuelle Maschine auf Basis von Ubuntu kann mit dem vmbuilder erstellt werden, siehe dazu JeOS and vmbuilder.

Konfiguration

Der OpenNebula Cluster kann nun konfiguriert werden. Weiterhin können virtuelle Maschinen dem Cluster hinzugefügt werden.

Auf dem Front-End geben wir dazu folgenden Befehl ein:

onehost create node01 im_kvm vmm_kvm tm_ssh
onehost create node02 im_kvm vmm_kvm tm_ssh

Als nächstes erstellen wir eine Template-Datei mit dem Namen vnet01.template für das virtuelle Netzwerk:

NAME = "LAN"
TYPE = RANGED
BRIDGE = br0
NETWORK_SIZE = C
NETWORK_ADDRESS = 192.168.0.0

Die NETWORK_ADDRESS sollte dem eigenen lokalen Netzwerk entsprechen.

Mit dem onevnet Befehl fügen wir das virtuelle Netzwerk OpenNebula hinzu:

onevnet create vnet01.template

Jetzt erstellen wir eine Template-Datei für eine virtuelle Maschine mit dem Namen vm01.template:

NAME = vm01

CPU = 0.5
MEMORY = 512

OS = [ BOOT = hd ]

DISK = [
source = "/var/lib/one/images/vm01.qcow2",
target = "hda",
readonly = "no" ]

NIC = [ NETWORK="LAN" ]

GRAPHICS = [type="vnc",listen="127.0.0.1",port="-1"]

Mit dem Befehl onevm starten wir die virtuelle Maschine:

onevm submit vm01.template

Mit dem Befehl onevm list können wir weitere Informationen über die gestarteten virtuellen Maschinen abfragen. Mit dem Befehl onevm show vm01 erhalten wir detaillierte Informationen zu einer bestimmten virtuellen Maschine.

Quelle